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Abstract

The serotonin (5HT) neurons of the dorsal raphe nucleus (DRN) play an impor-
tant and nuanced role in regulating animal behaviour. They exhibit heterogenous and
dynamic responses to rewards and punishments in vivo, and perturbations of their ac-
tivity modulate diverse behavioural states. This functional complexity is reflected in
the network architecture of the DRN, with its multiple cell types, local feed-forward
and recurrent connections, and partially segregated input-output streams that span
most of the forebrain. At the centre of this elaborate circuit, 5HT neurons them-
selves are now believed to be highly electrophysiologically heterogenous. As a first
step towards leveraging these observations to better understand the role of the DRN
in regulating behaviour, we set out to produce a phenomenological 5HT neuron model
capable of bridging the gap between single-neuron dynamics and network processing.
We found that a class of leaky integrate-and-fire (LIF)-derived models that accurately
replicate the firing behaviour of a variety of cortical neuron types could not capture the
behaviour of 5HT neurons. This is because, unlike cortical pyramidal neurons, 5HT
neurons exhibit pronounced nonlinearities in their subthreshold dynamics near action
potential threshold due to a pair of voltage-dependent potassium currents operating on
distinct timescales. Augmenting the LIF-derived model with both potassium currents
resulted in a significantly improved description of 5HT neuron firing dynamics. Addi-
tionally, we report that the distributions of the biophysical parameters that describe
these potassium currents and other fundamental properties of 5HT neurons suggest
the existence of a single, highly variable underlying population of these cells, rather
than multiple distinct serotonergic types. Our simplified 5HT neuron model opens the
door to understanding how the essential biophysical features of these cells and their
cell-to-cell variability shape population-level encoding of behavioural variables in the
DRN.
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1 Introduction

1.1 Role of the DRN in regulating behavioural states

The forebrain-projecting serotonin neurons of the dorsal raphe nucleus (DRN) play a key

role in regulating appropriate behavioural responses to a changing environment, but the

precise nature of this role is not well understood. This small population of neurons has

received a great deal of attention for its involvement in supporting adaptive behavioural

responses to stress in animal models [1], modulating internal mood-states in humans [2],

and mediating the therapeutic effects of widely-used antidepressant medications [3, 4]. In

contrast to the dopaminergic neurons of the ventral tegmental area, where a large body

of work detailing the involvement of this population in reward-seeking behaviour has led

to a unifying theoretical framework describing the mapping between a specific behavioural

variable (i.e., reward prediction error) and the firing patterns of these cells [5], a unified

theory of the coding properties of DRN serotonin neurons has remained elusive [6].

The coding properties of serotonin neurons have been particularly difficult to explain due

in part to their complex and heterogenous responses to emotionally-salient stimuli. Investiga-

tions using a fluometric approach to record DRN 5HT population activity have reported that

5HT neurons respond phasically to rewarding stimuli [7] and gradually develop an anticipa-

tory activity ramp as animals learn to associate reward-predicting cues with unconditioned

rewards [8]. There has been conflicting evidence as to whether 5HT neurons respond to aver-

sive as well as rewarding stimuli (reviewed in [9]). Whereas 5HT neurons have been reported

not to respond to aversive stimuli at the population level [7], investigations using an in vivo

electrophysiological approach to record from individual neurons have observed both reward-

and punishment-sensitive cells [10, 11]. Very recent work has resolved some of these apparent

discrepancies by providing strong evidence that the DRN contains segregated ensembles of

5HT neurons that differ in terms of their responsiveness to aversive stimuli and long-range
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connectivity [12]. To summarize, DRN 5HT neurons exhibit heterogenous responses to both

the delivery and anticipation of aversive and/or appetitive environmental stimuli which vary

over time and across DRN subregions. It is no wonder that a concise interpretation of this

non-stationary, non-uniform observational data has not appeared.

A small number of groups have attempted to clarify the role of 5HT neurons by opto-

genetically manipulating their activity during behaviour. Converging lines of evidence from

this body of work suggest an important role for serotonin in supporting sustained reward-

directed actions. Specifically, stimulation of DRN 5HT neurons appears to promote ‘patient’

waiting for reward [13–15]. Remarkably, although activation of 5HT cells promotes a type of

reward-seeking behaviour and even modulates the rate of reward learning [16], stimulation

of 5HT neurons does not appear to be directly reinforcing [13, 14, 16, 17] (but see [18]).

An important limitation of these experiments is that the passive waiting behaviour that

5HT neuron stimulation promotes may be confounded with a more generalized reduction in

locomotor activity [12, 17]. However, a recent report that stimulation also promotes active

waiting (i.e., repeated nose-poking) supports the existence of a direct effect on reward-seeking

behaviour [19].

The literature on the role of the DRN along other behavioural dimensions is less co-

hesive, largely due to methodological differences. In particular, the impact of optogenetic

stimulation on behavioural responses to aversive stimuli and general locomotor activity de-

pends heavily on which subset(s) of DRN neurons are targeted. Activation of the DRN as

a whole (including non-5HT neurons) promotes escape behaviour in animals subjected to

an uncontrollable stressor and increases locomotor activity [1], while phasic stimulation of

DRN 5HT neurons transiently decreases locomotor activity without impacting behavioural

measures of anxiety [17], and activation of a projection-defined subset of DRN 5HT neurons

increases anxiety-like behaviour without impacting locomotor activity [20]. Others have

noted similarly disparate findings across studies using a broader range of methodologies [12].

Clearly, the 5HT neurons of the DRN play key roles in regulating animal behaviour. Their
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spontaneous activity tracks emotionally-salient environmental stimuli, and perturbations in

their activity modulate behavioural responses to appetitive and aversive cues. However, far

from establishing a cohesive account of the behavioural and environmental variables encoded

by the DRN, recent work has instead highlighted the multifaceted nature of its behavioural

role [12]. So far, the coding scheme of the DRN defies simple explanations [6].

1.2 Anatomy and physiology of the DRN network

The apparent complexity of the serotonergic code is matched by the complexity of the

network architecture of the DRN. To provide a basis for beginning to understand the origin

of the heterogenous activity of 5HT neurons during behaviour, this section will review the

anatomy and physiology of the DRN with emphasis on recent evidence of its heterogenous

structure.

1.2.1 Physiology of DRN serotonin neurons

The rodent brain contains approximately 26000 serotonin neurons [21], so named for their

ability to synthesize 5-hydroxytryptamine (5HT) from the essential amino acid tryptophan.

Of these, approximately 12000 to 15000 have their cell-bodies located in the DRN [21, 22].

This group projects widely throughout the central nervous system, and is the main source of

serotonergic input to the forebrain [23, 24]. These cells exhibit a characteristic morphology

with a small (diameter ∼18 µm in rat), ovoid cell soma, few primary dendrites, and little

dendritic arborization [22, 25]. The axonal systems of serotonin neurons are highly collat-

eralized, and single neurons have been reported to innervate multiple downstream regions

[26]. Vesicular release of serotonin occurs at varicosities and terminals throughout the axonal

system, following which the serotonin is taken back up via the serotonin transporter (SERT)

(a sodium- and chloride-dependent cotransporter [27]) and recycled.

DRN 5HT neurons receive direct, excitatory input from principal neurons throughout

much of the forebrain (reviewed in detail in section 1.2.3) as well as local inhibitory input.
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Based on rabies-tracing experiments, 5HT neurons receive local input from GABA cells and

other 5HT neurons in roughly equal proportion [28]. The GABAergic input mediates feed-

forward inhibition by long-range inputs [29], and the serotonergic input has been suggested

to mediate recurrent inhibition within the DRN network [30].

DRN serotonin neurons were long thought to be fairly uniform in terms of their elec-

trophysiological features. Pioneering work on this system suggested that serotonin neurons

could be distinguished from other cell types in the DRN by their characteristic slow, regular

firing in vitro and in vivo, high membrane resistance, and expression of 5 HT1A receptors

[31–33]. While these are important characteristics of a large fraction of 5HT neurons, more

recent work has shown that 5HT neurons cannot be reliably differentiated from other cell

types in the DRN based on any of these features [10, 25], partly because 5HT neurons

are more electrophysiologically-heterogenous than previously believed [25, 34, 35]. In light

of these new developments, a model-based understanding of the properties of positively-

identified 5HT neurons that explicitly accounts for this observed cell-to-cell heterogeneity

is needed to provide insight into how the DRN network supports the heterogenous coding

scheme observed in vivo.

1.2.2 Physiology of other DRN cell-types

Along with 5HT neurons, the DRN contains a significant population of GABAergic cells,

and smaller numbers of glutamatergic and dopaminergic cells about which little is known.

The DRN GABAergic population shows almost no overlap with the 5HT neuron population

[36, 37], and can itself be subdivided into a large group of somatostatin-expressing cells

located mainly in the lateral wings of the DRN [36, 38–41], along with a very small group

of VIP-expressing cells clustered around the lower half of the aqueduct [42, 43]. Only a

minority of experimental studies differentiate between subtypes of GABAergic neurons in

the DRN, and it is not known whether these populations differ in their electrophysiological

properties. DRN GABA neurons are largely similar to serotonin neurons in terms of their

4



passive electrophysiological properties, but exhibit a fast-spiking phenotype [44]. Eventually,

it will be necessary to construct a single-neuron model of DRN GABA cells in order to

understand how local interactions between 5HT and GABA neurons shape the network

dynamics of the DRN (underway but outside the scope of this report).

1.2.3 Long-range connectivity

DRN serotonin neurons provide dense and highly divergent input to nearly every forebrain re-

gion. The DRN provides direct input to regions involved in regulating behavioural responses

to rewarding and aversive stimuli (e.g., orbitofrontal and infralimbic cortices, amygdala, bed

nucleus of the stria terminalis, and lateral habenula) as well as regions responsible for sen-

sory processing and movement [24]. Several groups have observed some degree of spatial

segregation of 5HT neurons within the DRN with respect to their target regions [45–48],

with one very recent investigation providing strong evidence for largely segregated cortical-

and subcortical-projecting serotonergic ensembles located in the ventromedial and dorsolat-

eral DRN, respectively [12]. The cortical-projecting population of 5HT neurons located in

the ventromedial DRN is particularly notable because of its high proportion of VGLUT3

co-expressing cells [12, 26, 37].

Non-serotonergic DRN neurons also contribute to this region’s long-range outputs. The

DRN sends a direct, behaviourally reinforcing input to the ventral tegmental area (VTA)

that consists mainly of strictly glutamatergic neurons (46 %) along with smaller numbers of

neurons that co-express tryptophan para-hydroxylase (TPH), strictly serotonergic neurons,

and unidentified cells [49]. DRN GABAergic neurons have also been reported to make long-

range connections with the olfactory bulb and the bed nucleus of the stria terminalis (BNST)

[41, 43].

The DRN receives direct forebrain input from a wide range of forebrain and brainstem

regions that is anatomically segregated and organized according to target cell-type. Accord-

ing to whole-brain rabies-tracing experiments, DRN neurons receive most of their input from
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the amygdala, hypothalamus, and brainstem, with less input from various cortical regions

(mainly motor and orbitofrontal cortices) and the lateral habenula [28, 50, 51], although

this approach does not necessarily reflect functional connectivity (see [52]). DRN 5HT and

GABA neurons appear to differ mainly in terms of their input from cortex and the cen-

tral amygdala (CeA), with 5HT neurons receiving proportionately more cortical input while

GABAergic cells receive more input from CeA (which is itself mainly GABAergic, and there-

fore disinhibitory) [28, 53]. In general, inputs to 5HT neurons from CeA appear to be more

concentrated in the dorsolateral DRN compared with cortical inputs, which preferentially

target the ventromedial DRN [12].

The input structure of the DRN is not static over time. Using an in vitro electrophysiolog-

ical approach, our group has shown that endocannabinoid signalling differentially regulates

the strength of descending medial prefrontal cortex (mPFC) inputs on 5HT and GABA neu-

rons [29], and that glutamatergic synapses on 5HT cells are transiently weakened by chronic

antidepressant treatment [54]. These observations illustrate that endogenous mechanisms as

well as environmental factors can regulate the network architecture of the DRN.

1.3 Towards a model-based understanding of DRN function

The anatomy and physiology of the DRN necessarily shape its function. Recent work has

shown that the DRN network is more complex than previously believed in terms of its cellular

architecture, local circuitry, and the organization of its long-range connections. A model-

based framework for understanding the DRN could leverage these observations to determine

what computations this network architecture might support, ultimately shedding light on

how 5HT neurons regulate behaviour. In this section we discuss the first step towards a

DRN network model: a simplified model 5HT neuron.

A 5HT neuron model well suited to bridging the gap between single neuron behaviour

and network dynamics has not yet been described. A model ideally suited to making this

connection must strike a compromise between biophysical detail and computational simplic-
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ity, but existing models of 5HT neurons sit at opposite ends of this spectrum (see [55] for an

excellent review). Previous models are either only loosely constrained to experimental data

(achieving similar firing rates but not necessarily reproducing other features of excitability)

[56, 57], or are tightly constrained but too complex to be suitable for network simulations

[58]. In addition, previous work does not explicitly account for the observed heterogeneity

among 5HT neurons. In the electrosensory system of the weakly electric fish Apterono-

tus leptorhynchus, neural heterogeneity implements a population-level redundancy-reduction

mechanism, considerably increasing the information density of population codes for sensory

stimuli [59]. In the DRN, heterogeneity among individual 5HT neurons may have a similar

role, facilitating efficient encoding of behavioural variables at the network level. The goal of

this project is therefore to address the limitations of previous work by creating a 5HT model

that contains only a minimal set of biophysically meaningful parameters that are tightly

constrained to experimental data and that reflect the underlying heterogeneity of the 5HT

neuron population.

Generalized integrate-and-fire (GIF) neuron models are ideally suited to bridging the gap

between the biophysical basis of neural integration and network dynamics. The construction

of the GIF is rooted in the work of Louis Lapicque, who first observed over 100 years ago that

the electrotonic properties of neuronal membranes were well approximated by those of a leaky

capacitor, forming an RC circuit between the inside and outside of the cell [60] (republished

in English as [61]). This observation is the foundation of widely-used leaky integrate-and-

fire (LIF) models, which impose a hard voltage threshold at which spikes occur over the

leaky integrator activity described by Lapicque. Rather than a hard threshold, the GIF

extends the simple RC circuit model of neuronal subthreshold dynamics with a stochastic

spiking rule taken from linear-nonlinear poisson models (LNPs). LNPs describe neurons in

terms of a set of arbitrarily-shaped linear input filters (which might describe, in a statistical

sense, how the activity of the neuron is correlated with its input, spike history, or even the

activity of neighbouring neurons; see [62] for a notable example of the use of a generalized
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version of LNPs to understand how spatially correlated population activity encodes sensory

information in the visual system) coupled to the rate of a spike-generating non-stationary

Poisson process via some nonlinear function [63, 64]. If an exponential function is used for the

nonlinear coupling, the likelihood of obtaining an observed spike train becomes a concave

function of the linear input filter coefficients [63]. This convenient property means that

LNPs can very easily be tuned to optimally reproduce spiketrains from experimental data

via maximum likelihood estimation of the input filters [63, 64]. The GIF takes advantage

of this property to find a soft voltage threshold that best explains an observed set of spikes

from an individual neuron, given the subthreshold dynamics estimated by the RC circuit

model [65].

By combining the minimal biophysical constraints of an RC circuit model of subthresh-

old dynamics with the stochastic spiking framework of LNPs, the GIF presents a simplified

biophysical model of the integrative features of single neurons that can easily be constrained

to experimental data [65]. While the GIF lacks part of the biological realism of biophysically

detailed conductance-based models (the GIF does not describe the ionic currents that lead

to action potentials, nor the activity of any voltage-gated ion channel), it is able to capture

the behaviour of real neurons surprisingly well, predicting the spiketrains of cortical pyra-

midal neurons with millisecond precision [65–67]. Because the GIF is expressed in terms

of biophysical parameters (unlike LNPs), it is more easily extended to account for the ef-

fects of specific biophysical phenomena (e.g. nonlinearities introduced by voltage-gated ion

channels, or changes in the shape of the after-hyperpolarization (AHP)) on the spiketrains

to which it is constrained. Finally, the biophysical parameterization of the GIF adds little

computational overhead compared with LNPs widely used for network modelling. Together,

these characteristics make the GIF an excellent tool for our eventual goal of understanding

how the integrative features of 5HT neurons shape DRN network dynamics.
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1.4 Summary

The complex network architecture of the DRN supports its nuanced and important role in

regulating animal behaviour. However, the details of how behavioural and environmental

variables are internally represented in the DRN remain unclear. In order to move towards a

unified understanding the behavioural role of the DRN, we set out to create a fundamental

building block of an experimentally-grounded DRN network model: a simplified 5HT neuron

model. Our goal was to create a model that accounts for the most important biophysical

processes that regulate firing in 5HT neurons, while remaining compact enough for network

simulations. The GIF is a biophysically-constrained version of the LNPs widely used in

network modelling that has been reported to predict the spiketrains of cortical pyramidal

neurons with millisecond precision [65–67]. However, in our hands, the GIF much more

poorly reflected the firing behaviour of DRN 5HT neurons than mPFC L5 pyramidal cells.

Using the GIF as a starting point for our modelling efforts, we first identified two phenomeno-

logical voltage-dependent potassium currents that contribute to the poor performance of the

GIF in 5HT cells. Next, by characterizing these two currents and incorporating them into

the GIF, we created a new potassium-augmented GIF model that better captures the firing

behaviour of 5HT neurons. Finally, we discuss the implications of our model for understand-

ing the general processing features of 5HT neurons, sources of functional heterogeneity in

this population, and potential consequences for some aspects of network-level processing.
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2 Materials and methods

2.1 Experimental procedures

2.1.1 Animals

Experiments were performed on male and female C57/Bl6 mice aged 4-8 weeks expressing the

fluorescent marker TdTomato under the control of the SERT promoter. Animals were group-

housed and kept on a 12:12-h light/dark cycle with access to food and water ad libidum. All

experiments were carried out in accordance with procedures approved by the University of

Ottawa Animal Care and Veterinary Services.

2.1.2 Slice preparation

Animals were deeply anaesthetized using isofluorane (Baxter Corporation) before being eu-

thanized by decapitation. The brain was quickly removed from the skull into ice-cold choline

dissection buffer containing the following: 119.0 mm choline chloride, 2.5 mm KCl, 4.3 mm

MgSO4, 1.0 mm CaCl2, 1.0 mm NaH2PO4, 1.3 mm Na ascorbate, 11.0 mm glucose, 26.2 mm

NaHCO3; saturated with 95 % O2/5 % CO2. A Leica VT1000S vibratome was used to cut

300 µm sections of the DRN in the same ice-cold choline dissection buffer. After cutting,

slices were placed in a recovery chamber filled with standard artificial cerebrospinal fluid

(ACSF) containing the following: 119.0 mm NaCl, 2.5 mm KCl, 1.3 mm MgSO4, 2.5 mm

CaCl2, 1.0 mm NaH2PO4, 11.0 mm glucose, 26.2 mm NaHCO3; ∼298 mOsm, maintained at

37 ◦C, and continuously bubbled with 95 % O2/5 % CO2. The recovery chamber was allowed

to equilibrate to room temperature for 1 h before beginning recording.

2.1.3 In vitro whole-cell electrophysiological recording

DRN neurons were visualized using an upright microscope (Olympus BX51WI) equipped

with differential interference contrast and a 40×, 0.8 NA water-immersion objective. Whole-
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cell recordings were obtained from fluorescently-labelled 5HT neurons using glass electrodes

(Sutter Instruments; tip resistance 4–6 MΩ) containing K-gluconate-based internal solution

(135 mm K gluconate, 6.98 mm KCl, 10 mm HEPES, 4 mm Mg ATP, 0.40 mm GTP, 10 mm

Na phosphocreatine; adjusted to pH 7.25 with KOH, 280–290 mOsm). For voltage clamp

experiments, whole-cell capacitance compensation was applied manually following break-

in. All experiments were carried out at room temperature. Neurons with access resistance

>30 MΩ or unstable holding current at −70 mV were excluded from analysis. Recordings

were collected with an Axon MultiClamp 700B amplifier, filtered at 2 kHz, and digitized at

10 kHz using an Axon Digidata 1550 digitizer.

2.2 Computational methods

2.2.1 Leaky integrate-and-fire model

The simplest model used in this work is the LIF neuron model. The LIF neuron consists of an

RC-circuit model of neuronal subthreshold dynamics coupled with a hard voltage threshold

at which the neuron emits a spike. The subthreshold dynamics of the LIF neuron are given

by

C
dV

dt
= −gl(V (t)− El) + I(t) (1)

where C is the membrane capacitance, gl = 1/Rm is the leak conductance (Rm is the

membrane resistance), El is the equilibrium potential of the leak conductance (equivalent

to the resting membrane potential in this case), and I(t) is the time-varying input current.

When the voltage of the neuron reaches a threshold value θ = −45 mV the model emits a

spike and the voltage is reset to a lower value Vreset = −60 mV.

The subthreshold part of the LIF model can be further simplified by expressing time in

units of the membrane time constant and expressing the input stimulus relative to the leak
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conductance. The subthreshold dynamics given in eqn. 1 then simplify to

dV

dt′
= −(V (t′)− El) + I ′(t′) (2)

where t′ = t/τ and I ′(t) = I(t)/gl.

2.2.2 Generalized integrate-and-fire model

The GIF model used as a starting point for a simplified serotonin neuron model is based on

the work of Pozzorini et al. [65]. Briefly, the GIF is comprised of an RC-circuit model of

neuronal subthreshold dynamics and a soft voltage threshold for spiking. The subthreshold

dynamics of the GIF neuron are the same as given above in eqn. 1. The GIF neuron emits

spikes stochastically according to an inhomogenous Poisson process with a time-varying rate

λ(t), given by

λ(t) = λref exp

(
V (t)− VT (t)

∆V

)
(3)

where VT (t) is the instantaneous spike threshold at time t, ∆V is the threshold width,

and λref is a reference firing rate to preserve units (arbitrarily fixed at 1 Hz). In discrete

time, the probability that n spikes are emitted during a time step of width ∆t is given by

P{N [t, t + ∆t) = n} = λ(t)n

n!
e−λ(t). In our work, ∆t (0.1 ms) is sufficiently small that at

most one spike can be emitted in an individual timestep. The probability of spike emission

P{N [t, t+ ∆t) = 1} therefore simplifies to

Pspk(t) = 1− e−λ(t)∆t (4)
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2.2.3 Models of potassium currents

Ionic conductances in this work are modeled using a simplified Hodgkin-Huxley formalism.

IA(t) = ḡAm∞h(V (t)− EK) (5)

IKslow(t) = ḡKslown∞(V (t)− EK) (6)

where Ix(t) denotes the current passed by conductance x; ḡx denotes the maximal conduc-

tance; EK is the Nernst reversal potential for potassium (−101 mV in this case); and m, h,

and n are gating variables. The steady-state voltage-dependence of the gating variables is

given by the first order Boltzmann function

x∞(V ) =
A

1 + exp(−k(V − V1/2))
(7)

where V1/2 is the midpoint of the activation function, k is the slope factor, and A is a scaling

factor. The time dynamics of the gating variables take the form

dx

dt
=
x∞ − x
τx

(8)

2.2.4 Augmented leaky integrate-and-fire model

For simulations involving a simple neuron with IA, the LIF neuron described above in 2.2.1

was augmented with a variable amount of IA in the subthreshold dynamics as follows

dV

dt′
= −(V (t′)− El)− ḡ′Am∞h(V (t′)− EK) + σnoiseξ(t

′) + I ′(t′) (9)

where ḡ′A = ḡA/gl is the effective amount of IA, and ξ(t′) is a random noise term that follows

a Gaussian distribution N (0, 1) with a scaling factor σnoise.
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2.2.5 Augmented generalized integrate-and-fire model

Augmented GIF neurons with IA and/or Kslow were constructed by inserting the IA/Kslow

dynamics defined in eqns. 5–6 into the subthreshold dynamics of the base GIF (eqn. 1),

yielding the following augmented subthreshold models

C
dV

dt
= −gl(V (t)− El)− ḡAm∞h(V (t)− EK) + I(t) (10)

C
dV

dt
= −gl(V (t)− El)− ḡKslown∞(V (t)− EK) + I(t) (11)

C
dV

dt
= −gl(V (t)− El)− (ḡAm∞h+ ḡKslown∞)(V (t)− EK) + I(t) (12)

For all GIF-type neurons, the spiking rule is given by eqn. 4.

2.2.6 Data analysis and numerical methods

Data analysis was carried out using Python 2.7 scripts that were custom written or modified

from [65]. The following third-party Python packages were used: numpy and numba for nu-

merical simulations; scipy for statistical analysis and signal processing; and matplotlib and

seaborn for figure creation. Statistical tests are indicated in the text, and non-parametric

tests were used when the normality assumption was not warranted.

In all simulations numerical integration was performed according to the Euler-Maruyama

method using a timestep of 0.1 ms or 10−3τmem. In some cases spikes are shown on simulated

traces from GIF or LIF neurons for clarity, but their amplitude is meaningless. Simulations

were run using Python 2.7 on MacOS or Linux.
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3 Results

3.1 Physiology of DRN serotonin neurons

To understand the general integrative features of forebrain-projecting serotonin neurons,

we carried out in vitro whole-cell electrophysiological recordings of fluorescently-labelled

serotonin neurons in the ventromedial DRN. Morphologically, serotonin neurons were char-

acterized by an oval to fusiform soma with a small number of sparsely-ramified primary

dendrites (see fig. 1B). In response to step currents, serotonin neurons emitted slow, adapt-

ing trains of single spikes (see fig. 1C & S4). When tetrodotoxin (TTX) was used to block

voltage-dependent sodium channels, serotonin neurons exhibited large outward currents in

response to voltage steps from −80 mV to near spike threshold (see fig. 1D). As previously

reported, application of 5-carboxamidotryptamine (5CT) elicited a hyperpolarizing current

(see fig. 1E), indicating that these neurons express 5 HT1A receptors [54]. Finally, we found

that serotonin neurons had low leak conductance (1.03± 0.35 nS; equivalent to a membrane

resistance of 1.13± 0.57 GΩ), small capacitance (69.7± 16.0 pF), long membrane time con-

stant (75.5± 29.5 ms), and a resting membrane potential near −70 mV (−68.7± 12.0 mV),

all of which except the membrane time constant were normally-distributed (Shapiro W -test

p > 0.05 in each case, except membrane time constant τ = Cm

gl
; see fig. 1F).

3.2 Validation of GIF model

The GIF is a highly simplified neuron model that can be trained to precisely predict the firing

behaviour of individual pyramidal neurons using limited data [65]. The GIF consists of three

parts: an RC-circuit model of neuronal subthreshold dynamics (see fig. 2A1), a stochastic

spiking mechanism that depends on voltage (see 2A2), and spike-triggered changes to the

former two parts. If the spike-triggered phenomena are omitted, the behaviour of the GIF

is dictated by only five parameters (gl = 1/Rmem, C, and El for the subthreshold part; VT
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Figure 1: Physiology of serotonin neurons. A. Long-range connectivity patterns of DRN 5HT
neurons. Amygdala (Amy), hypothalamus (Hy), lateral habenula (LHb). B. Identification of
5HT neurons. DIC (left) and fluorescence (right) imaging of DRN 5HT neurons showing Cre-
dependent expression of TdTomato. Triangle indicates the location of the patch pipette. C. Spiking
characteristics. D. Whole-cell currents in TTX. E. 5HT neurons express 5 HT1A receptors. F.
Passive membrane parameters. p-values are from Shapiro W -tests for normality. N = 63−64 cells.
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and ∆V for the spiking mechanism). Values for these parameters can be extracted from

∼1 min of data recorded from a single neuron in current clamp (see fig. 2B for a typical

experiment and fig. 2C for an outline of the fitting procedure), producing a model that has

been ‘trained’ to emulate the behaviour of the neuron to which it was fitted.

To validate the GIF, we stimulated L5 mPFC pyramidal neurons with Ornstein-Uhlenbeck

noise (OUN) (a model of synaptic noise) for ∼1 min and trained a set of GIF models us-

ing this data (termed the training dataset). We then stimulated the same neurons with

10 repetitions of a new 10 s OUN stimulus (termed the test dataset) and compared their

responses with the predictions of the GIF. In our hands, the predictions of the GIFs were

in close agreement with the responses of the real neurons to the new input (see fig. 2D1 for

a representative example). We found that the GIFs accurately predicted the subthreshold

response of the neurons to the new input (R2 = 0.907±0.037, see fig. 2D2). To quantify the

performance of the GIFs with respect to spike-timing predictions we used the M∗
d spiketrain

similarity metric [68]. M∗
d quantifies the similarity of two sets of spiketrains on a scale from

0 to 1 (larger numbers indicate greater similarity) at a given level of precision (4 ms used

here). In this case, we used M∗
d as a measure of the average similarity between the ten test set

spiketrains recorded from each mPFC neuron and a set of 500 spiketrains realized from the

corresponding model. Because the test dataset contains multiple replicates of the same test

stimulus, the value of M∗
d is partially corrected for the intrinsic unreliability of the neuron

from which the data was collected. In pyramidal neurons, we obtained M∗
d = 0.724± 0.122

using the GIF (see fig. 2D3), meaning that the model accurately predicted spiking to within

4 ms ∼70 % of the time, after accounting for intrinsic variability in the neural response. It

is therefore possible to accurately predict the behaviour of individual L5 mPFC pyramidal

neurons with a highly simplified neuron model such as the GIF.
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Figure 2: Validation of GIF model using pyramidal neurons. A. GIF model sketch. B. Structure
of a typical experiment. Injected current (top), recorded voltage (middle), and spike raster for
all replicates (bottom). Long noisy stimulus used to fit the model (training dataset, left), and
multiple repetitions of a shorter stimulus used to evaluate the model (test dataset, right). C.
Fitting procedure. As previously described [65]. D. Evaluation of GIF performance in L5 mPFC
neurons. D1. Sample test data (black) and model predictions (red). D2. Model successfully
predicts subthreshold response (N = 6 neurons). D3. Model successfully predicts spike timing
(N = 6 neurons). M∗d quantifies similarity of test set spiketrains and model predictions at a given
precision level (4 ms used here). Data collected by Dominic Cyr and Chloe Stewart.
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Figure 3: GIF poorly captures 5HT neuron behaviour. A. Sample test data (black) and model
predictions (red) in a representative 5HT neuron. Noisy current stimulus (top) and voltage response
(middle) from a single replicate of test data. Spike raster plot (bottom) for all test data replicates
from a single neuron. B. Model captures the majority of subthreshold behaviour (N = 7 neurons).
C. Model does not accurately predict spike timing at 8 ms precision (N = 7 neurons).

3.3 5HT neurons violate GIF model assumptions

While we found that the GIF was able to predict the firing patterns of mPFC neurons with

millisecond precision, it could not readily be tuned to reflect the behaviour of 5HT neurons

(see fig. 3A for a representative example). Due to the lower excitability and slower membrane

time constant of 5HT neurons compared with pyramidal cells, we collected larger training

(60 s × 3 repetitions) and test (15 s × 9 repetitions) datasets, used OUN with a longer time

constant (50 ms), and lowered the precision used for the M∗
d spiketrain similarity metric

(8 ms). Under these conditions, the GIF appeared to accurately capture the subthreshold

behaviour of 5HT neurons (R2 = 0.927± 0.017, see fig. 3B), but very poorly predicted their

firing patterns (M∗
d = 0.337± 0.097, see fig. 3C).
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Because the stochastic spiking mechanism employed by the GIF relies on having a good

estimate of the subthreshold voltage (see eqn. 3), we hypothesized that the relatively poor

performance of the GIF in 5HT neurons with respect to spiking might be rooted in deficiencies

of the subthreshold component of the model that are not reflected in the high R2 value. As

a first step towards testing this hypothesis, we asked whether the linear subthreshold model

used by the GIF described the subthreshold behaviour of 5HT neurons equally well at rest and

near threshold. To control for the contribution of spike-triggered phenomena (i.e., the AHP)

to the subthreshold dynamics, we collected a new dataset using slow OUN (τ = 200 ms) in the

presence of TTX to block spiking. When we fitted the subthreshold model to the resulting

data (see fig. 4A), we found that model error depended strongly on voltage (Friedman χ2

test p < 0.001 for k = 8 bins from −80 mV to −45 mV across N = 14 cells; see fig. 4B1).

In particular, the subthreshold model used by the GIF was significantly less predictive of

5HT neuron behaviour near spike threshold than near resting membrane potential (mean

squared error (MSE) at −60 mV significantly lower than at −45 mV, Wilcoxon signed-rank

test p < 0.001; see fig. 4). In contrast, the same subthreshold model described the behaviour

of L5 mPFC pyramidal neurons equally well throughout the subthreshold range (see fig. S1).

These observations show that the GIF does not accurately describe the voltage dynamics

of 5HT neurons near spike threshold, consistent with the hypothesis that poor performance

of the subthreshold component of the GIF in this range may lead to inaccurate spike train

predictions. In addition, the fact that the voltage dynamics of 5HT neurons are not well-

described by a passive, linear subthreshold model indicates that these cells express voltage-

dependent (i.e., nonlinear) conductances that operate in the perithreshold range.

3.4 Characterization of peri-threshold conductances

To understand the contribution of peri-threshold voltage-dependent conductances to the

subthreshold dynamics of serotonin neurons, it was first necessary to characterize these con-

ductances in greater detail. Using voltage-clamp experiments, we identified two dissociable
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Figure 4: Linear subthreshold model unevenly describes the subthreshold dynamics of 5HT neu-
rons at rest and near threshold. A. Sample test data from a 5HT neuron in TTX and corresponding
model prediction. Model error is shown in 5 mV bins; areas of the same colour are binned together.
B. Linear model performance quantified as a function of voltage. B1. Model error binned according
to the voltage of the real neuron. Fine lines are individual neurons and bold indicates the median.
B2. Model performs worse near spike threshold (N = 14). Gray lines indicate paired data taken
from one neuron. p-value is from a Wilcoxon signed-rank test.

conductances that activate in this voltage range: a large outward conductance that inac-

tivated rapidly, and a smaller outward conductance that did not inactivate (see figs. 1D

and 5A). Both of these conductances were sensitive to tetraethylammonium (TEA) and

4-aminopyridine (4AP), indicating that both the inactivating and non-inactivating currents

are carried by potassium (see fig. 5B). We identified the inactivating current as IA based

on its characteristic voltage-dependence and pharmacology. Multiple voltage- and calcium-

activated potassium channels may contribute to the non-inactivating current, which we refer

to here as Kslow.

Using a voltage-step protocol, we phenomenologically characterized the voltage depen-

dence of these conductances across the voltage range relevant to a spiking neuron model.

IA began to activate near −50 mV, and exhibited a small window current in the −55 mV to

−45 mV range (see fig. 5C1). Kslow began to activate at more depolarized voltages, near

−40 mV (see fig. 5D1). The activation and inactivation curves of both conductances were
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Figure 5: Characterization of perithreshold conductances in 5HT neurons. A. Representative
leak-subtracted traces showing distinct voltage-dependent outward currents in 5HT neurons. B.
TEA+4AP-sensitive potassium currents account for almost all of the leak-subtracted outward cur-
rent. Dashed black line indicates 0 pA. C1 & D1. Voltage dependence of inactivating (mainly IA)
and non-inactivating (termed Kslow) potassium currents. Data presented as mean±SD (N = 13).
Dashed gray lines are sigmoid curves (g/gref = A/(1 + e−k(V−V0))) fitted to the data. C2 & D2.
Magnitude of inactivating and non-inactivating potassium conductances at −20 mV across cells
(N = 13; each dot is one neuron).
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well-fitted by Boltzmann functions over this restricted voltage range (see fig. 5C1 & D1)

with parameter values given in table 1.

To compare the magnitudes of these conductances across cells, we adopted the steady-

state activation of each conductance at −20 mV as a reference, pseudo-maximal value. Us-

ing this measure, we found that the magnitudes of both IA (11.00± 2.77 nS) and Kslow

(1.71± 0.50 nS) were normally distributed (Shapiro W -test p = 0.521 for IA and p = 0.857

for Kslow; N = 13) and not significantly correlated with eachother (Pearson R = 0.227,

p = 0.456; N = 13) (see figs. 5C2 & D2 and fig. S2A). Similar results were obtained using

conductance at −40 mV as a reference value (see fig. S2B). These results suggest that DRN

5HT neurons are functionally homogenous with respect to IA and Kslow.

3.5 Kslow shapes the subthreshold dynamics of 5HT neurons

To test the contributions of these conductances to the subthreshold dynamics of 5HT neu-

rons, we added them one at a time to our RC-circuit subthreshold model (see eqn. 1) to

create a series of augmented leaky integrator models (see eqns. 10–12). When we added

IA alone to the linear RC-circuit model (see eqn. 10), we were surprised to observe that

the augmented model did not perform significantly better than the model with the leak

conductance alone (see fig. 6A). However, augmenting the linear model with Kslow (see eqn.

11) yielded a model that reflects 5HT neuron behaviour throughout the subthreshold range

(augmented model error does not depend on voltage, Friedman χ2 test p = 0.628 for k = 8

bins from −80 mV to −45 mV across N = 14 cells) by selectively improving performance

Table 1: Fitted IA and Kslow gating functions. Parameters are for the Boltzmann function
x∞(V ) = A

1+e
−k(V −V1/2)

fitted to data shown in fig. 5C1 & D1.

Current Gate Symbol
Boltzmann fit parameters
A k (mV−1) V1/2 (mV)

IA
Activation m∞ 1.61 0.0985 −23.7

Inactivation h∞ 1.39 −0.110 −74.7
Kslow Activation n∞ 1.55 0.216 −24.3
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near threshold (Kslow model error not different from base model error at −60 mV, Wilcoxon

signed-rank test p = 0.826; Kslow model error significantly lower than base model error at

−45 mV, Wilcoxon signed-rank test p < 0.01; see fig. 6B). When both IA and Kslow were

added to the model together (see eqn. 12), we observed a small but statistically-significant

improvement in performance compared with the Kslow augmented model (combined model

error significantly lower than Kslow-only model error at both −60 mV and −45 mV, Wilcoxon

signed-rank test p < 0.05 in each case; see fig. 6C). Taken together, these results show that

the peri-threshold nonlinearities in 5HT neuron subthreshold dynamics apparent in our data

(see fig. 4) are well-explained by the effect of Kslow.

3.6 Effect of IA on spike timing

Since IA is abundant in 5HT cells but apparently contributes very little to their subthreshold

dynamics, we asked whether this current might have a more potent effect on spike timing.

To address this possibility, we constructed a simplified LIF model augmented with IA and

a small amount of subthreshold noise (see eqn. 9). We found that in response to a square

input pulse, model neurons with abundant IA (∼ 10× leak, comparable to an average 5HT

neuron; see fig. 5C2) exhibited increased latency to the first spike and increased spike jitter

relative to neurons with little IA (equal amount of IA and leak, below the normal range for

5HT cells) (see fig. 7).

Based on our simulations using the augmented LIF model, we hypothesized that IA

robustly modulates spike timing in 5HT neurons. Due to the voltage-dependent inactivation

of IA (see fig. 5D1), it should be possible to distinguish the effect of IA from other factors

that regulate spiking (e.g., cell to cell differences in the leak conductance, stimulus strength,

etc.) by its voltage dependence. As shown in fig. 8A1-2, we predict that when neurons

with IA (IA+) are held near threshold, their response to a square pulse of input should

be very similar to that of a neuron without IA (IA–). However, when IA+ neurons are

held further from threshold, they can be distinguished from IA– neurons by the presence
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Figure 6: Subthreshold performance of augmented leaky integrator models. A-C 1. Sample traces
showing neuronal response to a noisy test stimulus (black) and corresponding model predictions.
A-C 2. Model error binned according to voltage. A-C 3-4. Comparison of model error near rest
(A-C 3 ) and near threshold (A-C 4 ). Gray lines indicate comparisons within one neuron. p-values
are from Wilcoxon signed-rank tests.
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Figure 7: Effect of IA on spike timing in a simplified model neuron. Model subthreshold dynamics
are given by eqn. 9, using σnoise = 0 mV in panel B1 and σnoise = 2 mV otherwise. A. Comparison
of neurons with little IA (equal amount of IA and leak) and abundant IA (∼ 10× leak). B. Specific
effects of IA on spike latency (B1 ) and spike jitter (B2 ).

of a pre-spike shoulder which dramatically increases spike latency. Over a wide range of

pre-stimulus potentials, this voltage-dependent shoulder produces a characteristic reverse

‘S’-shaped curve in the voltage/spike latency relationship shown in fig. 8A3. In fig. 8B, we

see that the behaviour of 5HT neurons fulfills both of these predictions. In response to a

square stimulus, 5HT neurons exhibit a pre-spike shoulder that is blocked by 4AP (see fig.

8B1-2), and the voltage/latency relationship displays a reverse ‘S’-shaped curve that is well-

fitted by the IA-augmented linear model (see fig. 8B3). Taken together, these observations

are persuasive evidence that IA exerts potent, voltage-dependent control over spike timing

in 5HT neurons.
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Figure 8: Effect of IA on spike timing in 5HT neurons. A. Voltage-dependent effect of IA on
spike timing in a simplified model neuron. Model subthreshold dynamics are given by eqn. 9,
using σnoise = 0 mV. A1 and A2. Comparison of the responses of neurons with and without IA
to a square stimulus. Note that both neurons respond similarly when already near threshold (pale
traces), while only the neuron with IAexhibits a pronounced shoulder in the voltage trace when
beginning from a more hyperpolarized potential (darker traces). A3. Voltage-dependent effect of
IA on spike latency. Note that spike latency follows a logarithmic curve in the neuron without
IA (black), while the neuron with IA (blue) shows a pronounced bend near -60mV. B. Voltage-
dependent effect of IA on spike timing in 5HT neurons. B1. 5HT neuron under control conditions
showing voltage-dependent shoulder. B2. 5HT neuron under IA block using 4AP with no shoulder.
B3. Spike latency distribution as a function of voltage in a different 5HT neuron. Note bend near
-60mV and voltage-dependent shoulder in inset.
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3.7 Improved performance of KGIF

Based on our findings that Kslow and IA are important regulators of the peri-threshold voltage

and firing dynamics of 5HT neurons, respectively, we hypothesized that an augmented GIF

model that incorporates these phenomena would better capture the firing behaviour of these

cells. To test this hypothesis directly, we combined the augmented subthreshold model con-

taining both conductances (see eqn. 12) with the spiking rules of the GIF to construct a new

K-augmented generalized integrate-and-fire (KGIF) model and compared its performance to

that of the GIF. As expected, the KGIF did not capture much more of the subthreshold

dynamics as measured by R2 (R2 = 0.927 ± 0.017 for the GIF and R2 = 0.931 ± 0.034 for

the KGIF, Wilcoxon signed-rank test p = 0.237; see fig. 9B), but did significantly improve

spiketrain prediction (M∗
d = 0.310 ± 0.091 for the GIF and M∗

d = 0.477 ± 0.152 for the

KGIF, Wilcoxon signed-rank test p < 0.05; see fig. 9C). It is interesting to note that while

the passive membrane properties of 5HT neurons estimated by the GIF and KGIF were sim-

ilar, as was the estimated spike threshold, the KGIF consistently fitted a sharper threshold

(i.e., lower ∆V ; see eqn. 3) (see fig. S3A). The more deterministic spiking associated with a

sharper threshold suggests that the KGIF better estimates the subthreshold behaviours that

lead to spiking. Together, these results show that the firing dynamics of DRN 5HT neurons

are best described by a model that accounts for the effects of IA and Kslow.
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Figure 9: KGIF better explains 5HT neuron behaviour. A. Sample test data (black) and model
predictions from the GIF (red) and KGIF (blue) in a representative 5HT neuron. Noisy current
stimulus (top) and voltage response (middle) from a single replicate of test data. Spike raster plot
(bottom) for all test data replicates from a single neuron. B. Both models capture the majority
of subthreshold behaviour (N = 6 − 7 neurons). C. KGIF better predicts spike timing at 8 ms
precision (N = 6− 7 neurons). p-values are from Wilcoxon signed-rank tests.
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4 Discussion

4.1 Apparent homogeneity of 5HT neurons

Several studies have now suggested that 5HT neurons are more electrophysiologically het-

erogenous than classically believed [25, 34, 69], but does this heterogeneity imply the ex-

istence of multiple 5HT neuron types? Our results suggest that 5HT cells with disparate

electrophysiological parameters are in fact drawn from the same highly variable population,

rather than separate populations with more stereotyped characteristics. Specifically, when

we examined the distributions of the minimal set of electrophysiological parameters required

to describe the subthreshold dynamics of 5HT neurons, we found that only the membrane

time constant was not normally distributed. This was, however, expected, because the mem-

brane time constant τmem = C
gl

, where C and gl are both drawn from Gaussian distributions,

and the division of two Gaussian distributions produces a gamma distribution that accurately

describes our data (not shown). Therefore, based on the distributions of passive membrane

properties and the magnitude of IA and Kslow, we cannot reject the hypothesis that 5HT

neurons belong to one biophysically-defined population.

In contrast, previous studies in this area have interpreted heterogeneity across biophys-

ical measures to mean that 5HT neurons should not be treated as though they belong to a

single population [25, 34, 69]. These divergent conclusions are likely to be due to important

methodological differences between this and previous work. First and foremost, two of the

three investigations cited have demonstrated differences in the electrophysiological charac-

teristics of 5HT neurons strictly across DRN subregions [25, 69]. Because any comparison of

the integrative features of 5HT neurons across subregions is outside the scope of the current

work, most of our data was collected from a single subregion (the ventromedial dorsal raphe

nucleus (vmDRN)) and the reported differences are therefore unlikely to be apparent in our

sample. Using an unsupervised clustering algorithm, one other study has given evidence for
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three distinct biophysically-defined 5HT neuron types within the vmDRN [34]. However,

because the authors do not report the underlying distributions of the parameters used for

clustering, and because the number of clusters detected in a dataset is usually at least partly

subjective, it is difficult to know whether the 5HT neuron types identified using this method

represent truly separate populations or merely segments of the same underlying population.

Finally, all three previous studies distinguish groups of 5HT neurons partly based on elec-

trophysiological parameters that are not likely to be functionally meaningful, such as action

potential shape [25, 34, 69]. While differences in the action potential waveform may reflect

real differences in the kinetic properties of the voltage-gated channels that mediate action

potentials, an important assumption of the LIF-type models used here is that these differ-

ences do not affect subthreshold dynamics or spike timing. Because of these methodological

differences, our conclusion that 5HT neurons are part of a single, highly variable population

is not incompatible with previous work. Instead, our findings represent a refinement of pre-

vious results by explicitly parameterizing the biophysical heterogeneity among DRN 5HT

neurons.

Recent work has established that multiple qualitatively different spiking phenotypes can

arise from a single biophysically-defined population [70]. This is because interactions between

the non-linear processes that regulate excitability (e.g. the voltage-dependence of spike

probability, or the dynamics of voltage-gated ion channels) can produce large, qualitative

shifts in firing dynamics in response to only small changes in the parameters of the underlying

processes [70, 71]. When these qualitative shifts arise in response to infinitesmally small

changes in the underlying biophysical parameters, they are referred to as bifurcations. Recent

work has demonstrated that depending on the amount of IA and the amplitude of injected

current, the firing dynamics of different cells from the same population (or even within an

individual neuron) can lie on either side of a bifurcation [70]. For example, under conditions

of abundant IA and a weak step current stimulus, neurons fire trains of action potentials

with a large latency to the first spike. However, if the magnitude of IA is decreased or the
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amplitude of the current increased slightly, it is possible to emit a spike with a very short

latency [70]. In our data, this effect is loosely reflected by the much shorter spike latency

when IA is inactivated using voltage (see fig. 8B3). Because we have shown that IA plays

a key role in shaping the firing dynamics of 5HT neurons, but that the magnitude of this

conductance varies substantially from cell to cell, it is possible that some subpopulations of

DRN 5HT neurons exhibit qualitatively different responses to identical stimuli. Conversely,

because the same spiking phenotype can arise from multiple combinations of ion channel

densities [72], it is possible that the firing patterns of 5HT neurons are in instead more

homogenous than the observed variability in the expression of IA and Kslow would suggest.

This work provides a simplified neuron model capable of capturing the effects of both of these

conductances on cell excitability, along with empirically-constrained parameter estimates for

DRN 5HT neurons. In the future, a detailed analysis of our model could shed light on the

nature of the relationship between biophysical and functional heterogeneity in the DRN.

4.2 Electrophysiological characteristics of peri-threshold conduc-

tances

4.2.1 Properties of Kslow

Voltage-dependent potassium currents play an important role in regulating the firing be-

haviour and subthreshold dynamics of 5HT neurons. The whole-cell outward current medi-

ated by voltage-gated potassium channels exhibits a fast component, which activates within

milliseconds and inactivates over tens of milliseconds, and a slow component, which does not

inactivate appreciably in our experiments (see fig. 5A & B). While we have identified the

fast component as IA based on its activation at subthreshold voltages and sensitivity to 4AP,

we have not positively identified the source of the non-inactivating component, referred to

as Kslow.

Several potassium currents that have been reported in DRN neurons may contribute
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to Kslow. These include M-type potassium current, which activates below threshold and

inactivates over seconds; delayed rectifier potassium current, which activates near −40 mV

and does not inactivate; and big- or small-conductance calcium-activated potassium channels

(reviewed in [58]). These currents are highly similar from a functional perspective in that

their activation and/or inactivation dynamics evolve over either significantly slower or faster

timescales than the intrinsic membrane dynamics of 5HT neurons (∼60 ms time constant).

Their time dynamics can therefore safely be ignored without drastically altering the dynamics

of a simplified neuron model. Because the time dynamics of the underlying current(s) are

unlikely to be critical and our model accurately reproduces the voltage-dependence of the

outward current observed in these cells, our phenomenological Kslow current provides an

adequate description of a key process that regulates the subthreshold dynamics of 5HT

neurons.

4.2.2 Properties of IA

First discovered in the neurons of the marine gastropod Anisodoris [73], IA is an inactivat-

ing voltage-dependent potassium current with biophysical properties that vary between cell

types. Although IA begins to activate below spike threshold, at steady state it is normally

almost completely inactivated at resting membrane potential [74]. In general, IA activates

very quickly in response to depolarizing voltage steps (τ<5 ms) and inactivates monoexpo-

nentially over tens of milliseconds [74]. In mammalian neurons, IA is mediated by multiple

potassium channel types from the Shal family: Kv4.1, Kv4.2, and Kv4.3. The properties

of Shal potassium channels are determined mainly by their large, pore-forming α subunits,

which differ in their expression patterns in mammalian brain [75] as well as their voltage-

dependence and kinetics [76]. Because the properties of IA can vary between cell types, we

chose to characterize it in 5HT neurons.

IA has been reported in DRN neurons a handful of times in the literature [77–79], but,

to our knowledge, the present work is the first characterization of IA in genetically-identified
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5HT cells. In our hands, the activation and inactivation curves of IA in 5HT cells were

well-described by a pair of first-order Boltzmann functions with parameters very close to the

mean values reported for other cell types, except for a smaller slope value of inactivation

curve in 5HT neurons (see table 2). Compared with previous characterizations of IA in

DRN neurons, we found that IA inactivated at more depolarized voltages (possibly reflecting

species or cell-type differences), but our results are otherwise similar. Because we show here

that the voltage-dependence of IA is homogenous and well-described by a pair of first-order

Boltzmann functions across a relatively large sample of genetically-identified 5HT neurons

(N = 13), our work sheds light on the previously not well characterized properties of IA in

these cells.

The voltage-dependence of IA in 5HT cells helps explain the potent effects of this current

on spike timing observed in our data. Whereas in other cell types IA is mostly inactivated at

rest [74], in 5HT neurons V1/2 of the inactivation curve is very close to the resting membrane

potential (V1/2 =−74.7 mV, mean Vrest =−68.7 mV). Because the midpoint of the inactiva-

tion function aligns with the resting membrane potential of 5HT cells and the slope of the

inactivation curve is shallow compared with other cell types, IA in 5HT neurons is likely to

be subject to relatively little inactivation in the subthreshold regime. These characteristics

enable IA to play a particularly important part in shaping the behaviour of 5HT neurons.

4.3 Functional effects of IA

4.3.1 Regulation of firing dynamics by IA

In this work, we have presented evidence that IA is an important regulator of firing dynamics

in 5HT neurons. Using complementary experimental and computational approaches, we have

shown that IA acts as a voltage-dependent regulator of spike latency in response to strong

inputs (see figs. 7 & 8). Using a simplified LIF neuron with IA, we have further predicted

that IA in 5HT neurons also jitters spike timing (see fig. 7B2). These findings support and
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extend a rich body of literature on the involvement of IA in regulating spike timing.

IA has been reported to exert voltage-dependent control over spike timing in a wide range

of cell types and model organisms [70, 80–86]. Particular attention has been paid to the effect

of IA on spike latency in response to a strong stimulus preceded by a period of quiescence, first

observed in the central pattern generating swim interneurons of Tritonia diomedea, a marine

gastropod mollusk [80]. Voltage-dependent inhibition is a canonical feature of IA, and it is

interesting to note that the hyperpolarization necessary to de-inactivate IA can be provided

by inhibitory synaptic input [81] as well as from a lack of excitatory drive. In the former

case, the voltage dependence of IA leads to complex, nonlinear interactions between synaptic

sources of inhibition and IA, which is thought to implement a type of contrast-enhancement

in sensory systems [81]. Whatever the mechanism of de-inactivation, several groups have now

demonstrated that IA delays the onset of firing by tens of milliseconds (depending on stimulus

strength and pre-pulse voltage) in neurons of mammalian [84, 86] and non-mammalian [81,

82] vertebrates. The magnitude of this effect is roughly consistent with our own findings.

Based on the change in latency when IA is inactivated using voltage, IA can modulate spike

timing by approximately 10 ms to 100 ms in 5HT neurons under our conditions (see fig. 8B3);

similar to what has been observed previously in unidentified DRN cells [78]. The fact that

this range shows substantial overlap with the distribution of membrane time constants found

in 5HT neurons (approximately 40 ms to 100 ms, see fig. 1F3) illustrates that the functional

effect of IA occupies a similar timescale to the passive membrane dynamics of 5HT neurons.

This suggests that the dynamics of IA cannot be ignored due to separation of timescales when

the general integrative features of 5HT neurons are being considered. Because this current is

known to influence the spiking behaviour of other cell types, including some thalamic relay

cells [86] and pyramidal neurons of the electrosensory lateral line lobe of weakly electric fish

[82, 85], our model of the impact of IA on spike latency and jitter may shed light on the

functional properties of other neuronal populations.

The effect of inactivating potassium currents on spike jitter has received little attention
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in the literature. One study has demonstrated that ID (an inactivating potassium current

similar to IA in terms of voltage-dependence and pharmacology, but with slower inactiva-

tion kinetics) increases spike jitter in CA1 pyramidal cells [87]. In it, the authors show

that blocking ID (but not IA, which is not active below threshold in CA1 neurons) using

dendrotoxin, low concentrations of 4AP, or voltage inactivation decreases the coefficient of

variation of spikes elicited by a square stimulus. Since IA and ID are both sensitive to the

high concentrations of 4AP used here, and mRNA for Kv1.2 (a member of the Shaker family

of ion channels that mediate ID) is expressed in some DRN cells [88], it is possible that ID

contributes to our phenomenological IA current. Because IA and ID are functionally similar,

these observations support our prediction that IA increases spike jitter in 5HT cells. These

convergent findings suggest that the jittering effect of transient hyperpolarizing currents may

be a general principle of neural integration.

4.3.2 Potential impact of IA on ensemble learning in the DRN

So far we have discussed the functional properties of DRN 5HT neurons as though they are

part of a static network, but previous work carried out by our group shows that this is not the

case [29, 54]. It is therefore important to consider whether the impact of the potassium con-

ductances we describe on the intrinsic excitability of 5HT neurons could precipitate changes

in the structure of the DRN network. Here we discuss one possible mechanism through which

this could occur: that IA might modulate the expression of spike time dependent plasticity

(STDP).

STDP is a plasticity rule according to which presynaptic activity that is closely followed

by a post-synaptic action potential leads to potentiation of the recently-activated synapses,

whereas the opposite sequence leads to synaptic depression [89]. In 5HT neurons STDP has

received little attention, but one recent publication has demonstrated that long-term poten-

tiation (LTP) can be observed with a 5 ms interval between pre- and post-synaptic activity in

this population [90]. Although the precise time-dependence of this effect is not known, it is
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interesting to consider whether IA could inhibit this LTP by prolonging the interval between

presynaptic activity and post-synaptic spiking under physiological conditions. If this is the

case, suppression of IA, for instance by noradrenergic input [77], might provide a mechanism

to modulate this phenomenon, effectively tuning the rate of synaptic potentiation in the

DRN.

4.4 Limitations of the GIF and KGIF

Although the KGIF better captures the behaviour of DRN 5HT neurons than the GIF, it

does not predict the firing patterns of these cells as precisely as the GIF does those of cortical

neurons. According to the M∗
d spiketrain similarity metric, the GIF predicted L5 pyramidal

neuron spikes to within 4 ms ∼70 % of the time after correcting for intrinsic variability in

the neural response (compared with ∼75 % previously reported in somatosensory cortex L5

pyramidal neurons [65]), whereas even the KGIF only predicted 5HT neuron spikes to within

8 ms ∼50 % of the time. This difference in performance is likely due to a combination of

experimental factors that limit model performance as well as physiological processes that are

not captured by the GIF and KGIF.

Non-physiological factors that may affect model performance include the finite amount

of data available to fit each model and the choice of fitting algorithm. In particular, the

low intrinsic excitability and slow time constant of 5HT neurons limit the amount of data

available to effectively constrain the GIF and KGIF models. In spite of collecting three

times more data per neuron from 5HT cells than from pyramidal neurons, much fewer spikes

were available in the 5HT neuron recordings to constrain the models. As a result, the

GIF and KGIF models fitted to 5HT neurons may have become more biased, reducing test

set performance. Arguing against this idea is the fact that the GIF achieves near-optimal

performance in pyramidal neurons when fitted to data containing only ∼ 100 spikes [65],

close to the 122.7 ± 68.6 (range 61 to 283) spikes/cell in our data. The lower performance

on spike prediction in 5HT cells is therefore not likely to be due to sampling bias caused by
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the smaller number of spikes in the 5HT neuron data.

Another potential source of model bias that could limit the accuracy of spike train pre-

dictions is the design of the algorithm used to fit the models to the training data. This is

particularly important in the case of the procedure used to extract the maximal conductances

of IA and Kslow (ḡA and ḡslow, respectively) for the KGIF. We used ordinary least-squares

(OLS) multilinear regression to fit these coefficients based on the subthreshold traces, but

it is possible that this approach does not produce optimal spiketrain predictions. This is

because the values of ḡA and ḡslow obtained by OLS are estimated based on equal weighting

of all points in the subthreshold trace. In our traces, most of the datapoints are concentrated

around the mean subthreshold potential of ∼−60 mV where IA and Kslow are minimally ac-

tivated, with relatively few points >−45 mV where both conductances play a potent role in

shaping the subthreshold dynamics. Our estimates of ḡA and ḡslow obtained by OLS regres-

sion may therefore not optimally describe the behaviour of 5HT neurons in the peri-threshold

voltage range over which IA and Kslow are most active. Use of an alternative approach such

as weighted least-squares may lead to ḡA and ḡslow estimates that are more similar to their

measured values and improved spike train predictions.

The lower performance of the GIF and KGIF in 5HT neurons also raises important ques-

tions about whether there are physiological processes that regulate spike initiation in 5HT

neurons that are not included in our model. One possibility is that there are additional

subthreshold conductances that participate in shaping the firing dynamics of these cells.

T -type calcium conductance is an important contender for this role because it is active at

subthreshold potentials, regulates firing patterns in other cell types [91], and is present in

some DRN neurons [92]. This low-voltage calcium conductance could regulate spike timing

both through direct depolarization and by delayed activation of calcium-dependent potas-

sium currents. While a previous detailed conductance-based 5HT neuron model included a

T -type current [58], we have not included it in our phenomenological model because the char-

acteristic transient inward current mediated by T -type calcium channels was not apparent
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in our data.

Another potential explanation for the lower predictive power of our model is that TTX-

sensitive sodium current participates in regulating spike timing in addition to action potential

shape. Like other integrate-and-fire models, our GIF and KGIF assume that this is not the

case. Recent data show that the progressive inactivation of sodium channels during repetitive

firing in 5HT neurons regulates spike threshold [93]. While both the GIF and KGIF account

for spike-triggered changes in action potential threshold, they do not account for partial

inactivation of sodium channels at subthreshold voltages during the time leading up to

isolated spikes. A variant of the GIF that explicitly accounts for this phenomenon better

predicts the spike trains of pyramidal neurons [67]. Because IA increases spike latency by

holding neurons near threshold for extended periods, peri-threshold inactivation of sodium

channels may play a particularly important role in regulating spike timing in cells with a

high level of IA. Therefore, a 5HT neuron model that also accounts for voltage-dependent

modulation of spike threshold may provide a better description of the firing behaviour of

these cells than the minimal model presented here.

Finally, it is possible that the complex effects of cell morphology and compartmentalized

expression of ion channels participate in shaping the integrative features of 5HT neurons in

ways that cannot be captured by the point neuron models used here. It is unlikely that ionic

currents in distal compartments play an important role in filtering the input used to fit the

models because the GIF and KGIF are trained on data using somatic current injection. Con-

sistent with this idea, the firing behaviour of cortical pyramidal neurons, which are known to

express a menagerie of ion channels segregated across various compartments, is easily cap-

tured by the GIF [65]. Therefore, although a morphologically-detailed model might provide

a better description of how 5HT neurons integrate synaptic inputs, it would not be likely to

provide a significantly better description of the intrinsic excitability of these cells than the

simplified model presented here. Furthermore, the complexity of morphologically-detailed

models makes them prohibitively difficult to constrain to individual neurons, meaning that
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they cannot easily reflect cell-to-cell heterogeneity.

The KGIF accounts for the dominant factors that regulate 5HT neuron excitability

present in our experiments, but does not perfectly reflect the spiking behaviour of these

cells. Optimizing the fitting procedure and accounting for the effect of sodium channel in-

activation on spike threshold are the most promising avenues towards improving the KGIF.

However, these and other possible optimizations may produce diminishing returns, and come

at the expense of added computational complexity. The KGIF therefore represents a com-

promise well-suited to applications in network modelling that demand a lightweight single

neuron model rather than millisecond precision.

4.5 Conclusion

How the complex network architecture of the DRN supports its nuanced role in regulating

behaviour is not well understood. As the first step towards a bottom-up understanding of

DRN network dynamics, we present a simplified 5HT neuron model suitable for network-

level simulations. Using complementary experimental and computational methods, we have

identified two phenomenological potassium currents that play important roles in shaping the

subthreshold dynamics and firing behaviour of these cells. In particular, we have shown that

an A-type potassium conductance with highly variable density in 5HT neurons regulates

spike latency and jitter. Our analysis provides a foundation for future work to determine

how these properties shape information processing in the DRN and other similar networks.
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39. Léon, M. d. et al. Distribution of Somatostatin-28 (I-12) in the Cat Brainstem: an
lmmunocytochemical Study. Neuropeptides 21, 1–11 (1992).

40. Fodor, M. et al. Distribution and pharmacological characterization of somatostatin
receptor binding sites in the sheep brain. Journal of Chemical Neuroanatomy 12, 175–
182 (1997).

41. Araneda, S., Gysling, K. & Calas, A. Raphe serotonergic neurons projecting to the
olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Research
Bulletin 49, 209–214 (1999).

42. Anhaou, A. et al. Immunocytochemical Distribution of VIP and PACAP in the Rat
Brain Stem: Implications for REM Sleep Physiology. Annals of the New York Academy
of Sciences 1070, 135–142 (2006).

43. Petit, J.-M., Luppi, P.-H., Peyron, C., Rampon, C. & Jouvet, M. VIP-like immunoreac-
tive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus
of the stria terminalis demonstrated by a double immunohistochemical method in the
rat. Neuroscience Letters 193, 77–80 (1995).

44. Gocho, Y., Sakai, A., Yanagawa, Y., Suzuki, H. & Saitow, F. Electrophysiological and
pharmacological properties of GABAergic cells in the dorsal raphe nucleus. The Journal
of Physiological Sciences 63, 147–154 (2013).

45. Abrams, J. K., Johnson, P. L., Hollis, J. H. & Lowry, C. A. Anatomic and Functional
Topography of the Dorsal Raphe Nucleus. Annals of the New York Academy of Sciences
1018, 46–57 (2004).

46. Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., Mikkelsen, J. & Shekhar, A. Modulation
of anxiety circuits by serotonergic systems. Stress 8, 233–246 (2005).

44



47. Commons, K. G. Two major network domains in the dorsal raphe nucleus: Two dorsal
raphe networks. Journal of Comparative Neurology 523, 1488–1504 (2015).

48. Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M. & Gaspar, P.
Conditional anterograde tracing reveals distinct targeting of individual serotonin cell
groups (B5–B9) to the forebrain and brainstem. Brain Structure and Function 221,
535–561 (2016).

49. Qi, J. et al. A glutamatergic reward input from the dorsal raphe to ventral tegmental
area dopamine neurons. Nature Communications 5, 5390 (2014).

50. Pollak Dorocic, I. et al. A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the
Dorsal and Median Raphe Nuclei. Neuron 83, 663–678 (2014).

51. Ogawa, S. K., Cohen, J. Y., Hwang, D., Uchida, N. & Watabe-Uchida, M. Organization
of Monosynaptic Inputs to the Serotonin and Dopamine Neuromodulatory Systems. Cell
Reports 8, 1105–1118 (2014).

52. Zhou, L. et al. Organization of Functional Long-Range Circuits Controlling the Activity
of Serotonergic Neurons in the Dorsal Raphe Nucleus. Cell Reports 18, 3018–3032
(2017).

53. Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to
Central Amygdala Neural Circuits for Appetitive Behaviors. Neuron 93, 1464–1479.e5
(2017).

54. Geddes, S. D. et al. Time-dependent modulation of glutamate synapses onto 5-HT
neurons by antidepressant treatment. Neuropharmacology 95, 130–143 (2015).

55. Wong-Lin, K., Wang, D.-H., Moustafa, A. A., Cohen, J. Y. & Nakamura, K. Toward
a multiscale modeling framework for understanding serotonergic function. Journal of
Psychopharmacology 31, 1121–1136 (2017).

56. Wong-Lin, K., Joshi, A., Prasad, G. & McGinnity, T. M. Network properties of a
computational model of the dorsal raphe nucleus. Neural Networks 32, 15–25 (2012).

57. Tuckwell, H. C., Zhou, Y. & Penington, N. J. Simplified models of pacemaker spiking
in raphe and locus coeruleus neurons. arXiv:1508.05468 [q-bio]. arXiv: 1508.05468
(2015).

58. Tuckwell, H. C. & Penington, N. J. Computational modeling of spike generation in
serotonergic neurons of the dorsal raphe nucleus. Progress in Neurobiology 118, 59–101
(2014).

59. Marsat, G. & Maler, L. Neural Heterogeneity and Efficient Population Codes for Com-
munication Signals. Journal of Neurophysiology 104, 2543–2555 (2010).

60. Lapicque, L. Recherches quantitatives sur l’excitation électrique des nerfs traitée comme
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A Supplementary figures

Figure S1: Linear subthreshold model accurately describes pyramidal neurons. A. Sample test
data from a pyramidal neuron in TTX and corresponding model prediction. B. Linear model
performance quantified as a function of voltage. B1. Model error binned according to the voltage
of the real neuron. Fine lines are individual neurons and bold indicates the median. B2. Model
performs similarly at rest and near spike threshold (N = 7). Gray lines indicate paired data taken
from one neuron. Data collected by Chloe Stewart and Dominic Cyr.
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Figure S2: IA and Kslow magnitudes are uncorrelated. Pearson correlation coefficient R is in-
dicated on each plot. Each dot is one neuron (N = 13). A. Correlation plot using conductance
at −20 mV as a reference value. B. Correlation plot using conductance at −40 mV as a reference
value.

Figure S3: GIF (red) and KGIF (blue) parameter values from 5HT neuron fits. A. Passive
membrane and firing mechanism parameters. B. Spike-triggered filters. See [65].
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Figure S4: Spike frequency adaptation in 5HT neurons in response to a 15 s current step. Sample
trace (top) and normalized inter-spike-interval (ISI) length (bottom; each line is one cell).

Figure S5: Decay time constant of IA in 5HT neurons during a −90 mV to −20 mV step. Sample
trace with monoexponential fit (left) and distribution of τh fits (right). τh distribution 42.9± 9.0 mV
(mean±SD).
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Figure S6: Frequency content of Ornstein-Uhlenbeck noise used in this work. Sample traces (top)
before (gray) and after (red) filtering by a simulated neuron with a membrane time constant of
75 ms. Frequency content (bottom) before (gray) and after (red) filtering by the same simulated
neuron as at top. Critical frequencies of the membrane filter (using τmem = 75 ms) and IA lowpass
filter (using τh = 42.9 ms, the mean value from fig. S5) are indicated with dashed lines.
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