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Mathematical Background



Expected Values

The expected value of a discrete random variable X is

EX[X] =
∑
x∈X

xp(X = x).

For a function of a random variable g(·), the expected value is

EX[g(X)] =
∑
x∈X

g(x)p(X = x). (1)
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Expected Values

Example
A head-fixed mouse is presented with two lick ports. Define

X =


no lick with probability 0.5
lick left with probability 0.4
lick right with probability 0.1

R(X) =


0 if X = no lick
1 if X = lick left
2 if X = lick right.

The expected reward is

E[R(X)] = R(no lick)p(no lick) + R(lick left)p(lick left) + R(lick right)p(lick right)
= 0× 0.5 + 1× 0.4 + 2× 0.1
= 0.6.
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Conditional Probability

Let a person’s binned height H and weight W be potentially correlated random variables.
The probability that a person’s height is h = 150cm, given that their weight is w = 60kg is

p(H = h | W = w) = p(h | w) = p(H = 150cm | W = 60kg).

The overall probability that a person’s height is h = 150cm ignoring their weight is

p(H = h) = EW[p(H = h | W = w)]

=
∑
w∈W

p(H = h | W = w)p(W = w)

=
∑
w∈W

p(h | w)p(w)

= p(H = 150cm | W = 55kg)p(W = 55kg) + p(H = 150cm | W = 60kg)p(W = 60kg) + ...
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Markov Chains

Consider a mouse presented with two ports that can be licked at any time and in any order.

Model the behaviour of the mouse as a Markov chain with states
S = {no lick, lick left, lick right}. The state of the mouse at time t is a discrete random
variable St over S from which a specific state st is sampled at each timestep with
probability p(St = st | St−1 = st−1).
A trajectory τ = st, st+1, ..., st+N is an observed sequence of states which occur with joint
probability p(st, st+1, ..., st+N). By the Markov property,

p(st, st+1, ..., st+N) = p(st)p(st+1 | st)...p(st+N | st+N−1)

= p(st)
N∏

k=t+1

p(sk | sk−1).

Take home point
The probability that the mouse’s actions are [lick left, lick left,no lick, lick right] over four
timesteps is trivially easy to compute under the Markov assumption. This is the main
reason Markov processes are so widely used in reinforcement learning.
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Pause to consider
Assume the mouse prefers the most recently licked port, even if it has not licked in several
time steps. Can this be modelled with a Markov chain?

Answer: Yes, but the Markov chain must contain several more states.
S = {(no lick, last lick left), (no lick, last lick right), ...}
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Reinforcement Learning Basics



Reinforcement learning in context

Figure: From Goodfellow et al. (2016?).

Machine learning involves algorithms that can
estimate model parameters from data.

I Supervised learning.
Models that learn to predict the true value of a
known variable.
Example: logistic regression.

I Unsupervised learning.
Models that uncover hidden structure in data.
Examples: K-means clustering, PCA.

I Reinforcement learning (RL).
Models that learn through interaction with their
environment.
Examples: YouTube recommendation algorithm,
control systems.

Deep learning is now a common technique for
nonlinear function approximation.
I Can be used for any type of machine learning.
I Example: value function approximation in RL.
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Background

What does the world look like to a RL algorithm?
Agent: Entity controlled by the algorithm.
I Defined in terms of actions and their associated values.

Environment: Anything not directly controlled by the algorithm.
I Defined in terms of states and their associated transitions.

Notation
At: Random variable for action taken at time t.

at: Action actually taken at time t (i.e., sample drawn from At).
St: Random variable for state occupied at time t.

Example
Situation Agent Environment
After pressing a lever, food reward is delivered x
Hungry mouse chooses to eat food x
Mouse is no longer hungry after eating x
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Essential components of RL algorithms

Reward signal.
I Quantity to be maximized.
I Usually a scalar Rt ∈ R at time t.

Value function.
I Expected future rewards under a given behavioural policy.
I Usually a function Vπ(St).

Behavioural policy.
I Probability distribution over available actions.
I Written π(at | st) ≡ p(At = at | St = st).

Probability of selecting action at out of the set of available actions in the current state.
I Usually high-value actions are chosen with high probability.

Note
The value function and behavioural policy are inextricably linked.

Usually we choose actions based on estimated value.
Value depends on future actions set by the policy.
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Evaluating the Value Function



Expected Total Reward

Let τt:T = [st, st+1, ..., sT] be a trajectory of states the mouse passes through from time t to T.
Define G(τt+1:T) =

∑T
i=t+1 R(si) to be the total reward obtained by the mouse starting from

st. The simplest value function of st we might define is the expected total future reward

Vπ(st) ≡ ET [G(τt+1:T) | St = st;π] .

Recalling that EX[g(X)] =
∑

x∈X g(x)p(x) (1), we can equivalently write

Vπ(st) =
∑

τt+1:T∈T
G(τt+1:T)p(τt+1:T | st;π)

=
∑

τt+1:T∈T
[R(st+1) + R(st+2) + ...+ R(st+N)]p(st+1, st+2, ..., sT | st;π),

summing over all possible trajectories τ ∈ T that begin with st.
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Since our agent and environment obey the Markov property, we can find an equivalent
recursive definition of the value function.

Vπ(st) =
∑
τt+1∈T

G(τt+1) +
∑

τt+2:T∈T
G(τt+2:T)p(st+2, st+3, ..., sT | st+1;π)

p(st+1 | st;π)

=
∑
τt+1∈T

[G(τt+1) + Vπ(st+1)]p(st+1 | st;π)

Because G(τt+1) = R(st+1), we can substitute and rearrange to obtain an intuitive definition
of the value function

Vπ(st) = ESt+1 [R(st+1) | st;π] + ESt+1 [Vπ(st+1) | st;π].

Think ahead
This recursive definition allows us to bootstrap. If computing the true value of Vπ(st+1) is
di�cult or impossible, we can use an estimate V̂π(st+1) in its place.

10 37



Since our agent and environment obey the Markov property, we can find an equivalent
recursive definition of the value function.

Vπ(st) =
∑
τt+1∈T

G(τt+1) +
∑

τt+2:T∈T
G(τt+2:T)p(st+2, st+3, ..., sT | st+1;π)

p(st+1 | st;π)

=
∑
τt+1∈T

[G(τt+1) + Vπ(st+1)]p(st+1 | st;π)

Because G(τt+1) = R(st+1), we can substitute and rearrange to obtain an intuitive definition
of the value function

Vπ(st) = ESt+1 [R(st+1) | st;π] + ESt+1 [Vπ(st+1) | st;π].

Think ahead
This recursive definition allows us to bootstrap. If computing the true value of Vπ(st+1) is
di�cult or impossible, we can use an estimate V̂π(st+1) in its place.

10 37



Since our agent and environment obey the Markov property, we can find an equivalent
recursive definition of the value function.

Vπ(st) =
∑
τt+1∈T

G(τt+1) +
∑

τt+2:T∈T
G(τt+2:T)p(st+2, st+3, ..., sT | st+1;π)

p(st+1 | st;π)

=
∑
τt+1∈T

[G(τt+1) + Vπ(st+1)]p(st+1 | st;π)

Because G(τt+1) = R(st+1), we can substitute and rearrange to obtain an intuitive definition
of the value function

Vπ(st) = ESt+1 [R(st+1) | st;π] + ESt+1 [Vπ(st+1) | st;π].

Think ahead
This recursive definition allows us to bootstrap. If computing the true value of Vπ(st+1) is
di�cult or impossible, we can use an estimate V̂π(st+1) in its place.

10 37



Discounting

Figure: Comparison of Vπ(st) with
discounting (γ < 1) and without (γ = 1).

Our previous definition of Vπ(st) has a problem:
immediate and delayed rewards of equal magnitude
have the same value.

But, intuitively, closer rewards are better.
To fix this, we introduce a time-discounting parameter
γ to obtain a new definition

Vπ(st) ≡ ESt+1 [R(st+1) | st;π] + γESt+1 [Vπ(st+1) | st;π],

where 0 < γ ≤ 1.
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Pause to consider
We introduced time discounting using a scaling factor γ applied at each time step. This way,
a reward of size 2 that is 100 timesteps away is currently valued at 2γ100 ≤ 2. How else
could we express time discounting?

Answer:

γ
τdiscount

dt ≈ 1
e

τdiscount ≈
dt

e log γ ,

where τdiscount is the time-constant of temporal discounting.
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Pause to consider
Often the value function cannot be evaluated exactly. What are some reasons this might
happen?

We don’t know exactly how our environment and/or behavioural policy work.
I Mouse is uncertain about layout of maze, time to delayed reward, which lick port is

rewarded, level of hunger, etc.
I Formally, p(st+1 | st;π) is not known.

Long time horizon T ≈ ∞ makes G(τt+1:T) =
∑T

i=t+1 R(si) intractible.
I This is ubiquitous in animal learning.
I Continual learning is a topic of ongoing research in RL.

Large state space =⇒ very large set of trajectories.
I Maze with many turns =⇒ very large set of possible paths through maze.

Key point
Vπ(st) is easy to define but impossible to evaluate under normal circumstances. Methods to
approximate the value function are at the core of RL.
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Types of Value Functions

So far we have only seen the state value function Vπ(st), but other types are possible.

Recall that Vπ(st) only depends on the policy π(at | st) because of the term

p(st+1 | st;π) = EAt [p(st+1 | at, st) | st]

=
∑
at∈At

p(st+1 | at, st)π(at | st).

By factoring out the behavioural policy π(at | st) from Vπ(st) we can obtain a discounted
action value function

Q(st,at) ≡ ESt+1 [R(st+1) | st,at] + γESt+1,At+1 [Qπ(st+1,at+1) | st,at;π]

which returns the value of taking a specific action at in state st and following π thereafter.
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Key point
The state value function Vπ(st) gives the expected discounted future rewards following
π from state st.
I Easy to understand.

The action value function Qπ(st,at) gives the expected discounted future rewards by
taking action at in state st and following π thereafter.
I Meaningful for evaluating the value of particular choices or behaviours.
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Example
Consider again our head-fixed mouse presented with two lick ports. Assume only the left
lick port is rewarded. What type of value function should we use to model this experiment?

Answer: Because the reward obtained depends strongly on the action at, an action value
function Qπ(st,at) is best.

If both lick ports are rewarded with probability 0.5, what value function should we use?
Answer: We should use Vπ(st). While the Q value is still valid, using it here would be
needlessly complicated since Q is independent of π.

p(st+1 | st,at) = p(st+1 | st) =⇒ Qπ(St = st,At = x) = Qπ(St = st,At = y)∀x, y.
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Behavioural Policies



Behavioural Policies

Probability distribution over available actions.
I π(at | st) ≡ p(At = at | St = St)

If we always choose the best action, then

π(at | st) ≡

{
1 At = argmaxat

Qπ(st,at)

0 otherwise.

I This leads to optimal behaviour as long as our value function is correct.

Key point
Picking a policy π is easy if our value function is correct. But our value function is almost
never correct!
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Exploitation vs. Exploration

Figure: Greed is good.

A policy that always chooses the highest valued
action is called greedy.
The policy that is greedy with respect to the true
value function is optimal.
In practice, we do not have access to the true
value function, and we have to make a tradeo�.
I Exploitation: actions that are greedy with respect

to the current policy.
Obtain rewards.

I Exploration: actions that are non-greedy with
respect to the current policy.

Search for a better policy.

18 37
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Strategies for Balancing Exploration and Exploitation

O�-policy control.
I Use an explorative policy to control the agent while refining a separate policy. When

exploitation is needed, switch to the policy being refined.
ε-softness (aka ε-greediness).
I Use a greedy policy to control behaviour, but take a random action a small percentage of

the time.

Definition of ε-softness

π(at | st) ≡

{
1− ε At = argmaxat

Qπ(st,at)
ε

N−1 otherwise

for a policy with N possible actions in state st.
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Example
Consider a freely-moving mouse presented with two lick ports at opposite ends of a box,
which are rewarded with separate, non-constant probabilities.

At each timestep, the mouse chooses from a set of available actions
A = {lick current port, switch to other port,do nothing} that cause it to transition
deterministically between states in S = {sit at port 1, sit at port 2, lick port 1, lick port 2}.

A neural population containing three ensembles could encode Qπ(st,at) for each
available action in the current state.
Lateral inhibition in this population could implement a winner-take-all argmax
function over available actions, leading to greedy action selection.
Moderate lateral inhibition could implement an ε-soft policy via a soft argmax function.
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Food for thought
Consider the set of three ensembles encoding Qπ(st,at)∀at ∈ A from the previous example.
If we activate all three ensembles optogenetically or chemogenetically, how does the
representation of Qπ change, and how would this a�ect behaviour?

All Qπ(st,at) set to the same high value.
I “Greedy” behaviour becomes random.

All Qπ(st,at) increased by a fixed amount.
I Behaviour becomes less greedy?

All Qπ(st,at) increased multiplicatively.
I Behaviour does not change at all?
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Value Function Optimization



Multiple Techniques for Optimizing Qπ or Vπ

Most are based on biologically unrealistic assumptions.

Dynamic programming.
I Requires a perfect model of the environment.

Monte-Carlo methods.
I Requires a rigid trial structure.
I All value function adjustments are perfomed at trial end.

Most biologically plausible optimization algorithm is temporal di�erence (TD) learning.
Perfect environmental model is not required.
I In fact, no environmental model is needed at all.

Value functions are updated in real time.
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Pause to consider
Recall that state and action value functions include a term p(st+1 | st;π) or p(st+1 | st,at) to
model environmental state transitions.

“Model-free” methods (e.g. TD and Monte-Carlo) avoid specifying full distributions for these
terms by sampling from them directly.
Model-free and model-based methods are thought to reflect habitual and goal-directed
behaviours.

Example: model-free learning
Consider a fledgeling electrophysiologist attempting to seal onto a cell.

S = {not sealed, sealed}
A = {amount of suction ∈ {0, 1, ..., 10}}

The experimenter does not know eg
p(St+1 = sealed | St = not sealed,At = 3) > p(St+1 = sealed | St = not sealed,At = 7), but
will eventually learn to apply the correct amount of suction by sampling from this
distribution.
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Recall
Earlier we obtained recursive definitions of V and Q value functions of the form

Vπ(st) ≡ ESt+1 [R(st+1) | st;π] + γESt+1 [Vπ(st+1) | st;π].

Recall that these allow us to use a bootstrapped estimate V̂π(st+1) in place of Vπ(st+1) when
the latter is not available or di�cult to compute.

Key point
Core idea of TD learning is to compare three quantities across short time intervals.

1. Observed reward (R(st+1)).
2. Bootstrapped future value estimate (V̂π(st+1)).
3. Current value estimate (Vπ(st)).

24 37
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Temporal Difference Learning

For an agent exploring its environment, the following TD update is performed at each
timestep

Qπ(st,at)← Qπ(st,at) + α
[
R(st+1) + γQ̂π(st+1,at+1)− Qπ(st,at)

]
where 0 < α ≤ 1 is an e�ective learning rate, γ is the temporal discounting parameter, and
Q̂π(st+1,at+1) is the estimated value of the next state action pair from a lookup table.

If we define a TD error term

δt ≡ R(st+1) + γQ̂π(st+1,at+1)− Qπ(st,at),

we can write the TD update more succintly

Qπ(st,at)← Qπ(st,at) + αδt.
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Properties of TD Reward Prediction Errors

Figure: Dopaminergic reward prediction
errors. Schultz et al. (1997)

Yes, those RPEs.

Not quite “experienced minus expected reward”.

δt ≡ R(st+1) + γQ̂π(st+1,at+1)− Qπ(st,at)

Key point

TD errors are partly due to temporal di�erences in
the value function.
TD errors only asymptotically approach zero.
Therefore, the shape of TD RPEs partly reflect the
shape of the value function.
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TD Errors Come in Many Shapes and Sizes

Figure: TD errors in a classical
conditioning task (cue not
shown).

Figure: n-step TD errors in the
same task.

Figure: TD errors based on
eligibility traces.
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Figure: Population responses of VTA DA and DRN 5HT neurons over the course of learning in a classical
conditioning task. Zhong et al. (2017)
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Food for thought
Does the DRN encode R(st+1) + Q̂π(st+1,at+1)?

Reward +Q value DRN
Responds to rewards Population responds to rewards

Not directly used for learning Not reinforcing
Related to action choices Regulates behaviour

Closely related to δt Strong connection with DA system
Heterogenous responses to anticipated rewards Maybe?

Perhaps a better question is: Over which rewards and actions can the DRN be seen as
encoding a reward signal and value function?
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Alternative State Space Representations



State Vectors (1)

So far we have considered models that represent the environment as existing in a
particular discrete state st ∈ S .

Di�cult to optimize for any realistic environment.
I Large state spaces S are required.
I No generalization across similar states.

Example
Consider a mouse in a classical conditioning task.

S = {go cue on and smell of experimenter A, go cue on and smell of experimenter B, ...}

Under this model, knowledge about the go cue acquired under experimenter A cannot be
applied under experimenter B.

30 37
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State Vectors (2)

Figure: State vectors in the VTA. Schultz
et al. (1997).

Instead, we can represent states as vector
combinations of discrete features.

Notation
st: Vector of state features.

I A list of all state features.
θ: Learnable parameters.

I Typically a vector of weights corresponding to
each feature.
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Example
Consider again the mouse in a classical conditioning task. Write the environmental state as
a vector

st =
[
go cue ∈ {0, 1} smell A ∈ {0, 1} smell B ∈ {0, 1} · · ·

]>
with a corresponding weight vector

θ =
[
wgo cue wsmell A wsmell B · · ·

]>
.

The corresponding state value function might be

Vπ(st; θ) ≡ st · θ =
∑

siθi

where θ is adjusted during learning.
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Example (continued)
Suppose that the animal learns a strong association with the go cue, such that the weights
in θ reach an equilibrium

θ →
[
1 0 0 · · ·

]>
.

If we introduce a new predictive stimulus after the go cue (e.g. smell of experimenter B),
what will happen to θ?

Answer: Remember that the TD update rule is defined as

Vπ(st; θ)← Vπ(st; θ) + αδt.

Note that since the animal has already learned to fully predict the reward from the go cue,
δt ≈ 0.
Therefore, there is no basis for updating θ to reflect the new cue. The smell of experimenter
B is said to be blocked.
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Pause to consider
How else could we implement Vπ(st; θ)?

As a simple nonlinear combination of input features.
I E.g.

∑
s2

i θi

As a deep neural network.
I C.f. deep reinforcement learning.
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Representing Time

Time can be represented in a state vector in multiple ways.
I Depends on choice of temporal basis functions.

Shape of value function depends strongly on time representation.

Limiting shape of RPEs depends strongly on time representation.
I In some circumstances, ramping RPEs may be observed (see Gershman (2014) comment on

Howe et al. (2013)).
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Topics for Futher Reading

Eligibility traces.
I Fuzzy multi-step TD learning for state vectors.

O�-policy control.
I Separate policies for exploration and exploitation.

Actor-critic algorithms.
I Possibly implemented by basal ganglia.

The deadly triad.
1. Function approximation.
2. Bootstrapping.
3. O�-policy training.
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Conclusion

Reinforcement learning is a subfield of artificial intelligence and machine learning.
RL agents have two main components.

1. Value function Vπ(st) or Qπ(st, at).
Used for prediction.

2. Behavioural policy π(at | st).
Used for control.

Temporal di�erence (TD) learning is a biologically plausible optimization algorithm.
I Implements learning of habit-like behaviours.
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Thank You!
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